您当前的位置:首页 > 主题内容 > 重症监护 > ICU新进展

ANG II受体阻断剂对大鼠机械通气所致肺损伤的保护作用

时间:2010-08-23 14:05:00  来源:  作者:

[Abstract]  Objective  To study the protective role of Angiotensin II receptor inhibitor in Ventilator-induced lung injury of rat. Method  Forty healthy male SD rats were equally divided into four group(ABC D group, n=10). A was control group.  B group was low tidal volume(VT =10ml/kg) group with breathing rate(p)=80/min; C group was high tidal volume(VT=40ml/kg) group with breathing rate(p)=80/min; D group was high tidal volume(VT=40ml/kg) group with breathing rate(p)=80/min. and all rats in D group were pretreat with Losartan. The duration of ventilation in all groups was two hour. Rats were sacrificed after experiment was completed. The lung lavage liquid and lung tissue were collected and preserved with well established methods. Lung pathological change was observed by microscope; Lung cell apoptosis was assessed with TUNEL; The expression of ANG was assayed with RT-PCR. The measured variables also included total proteinW/DWBCMPO . Results  In comparison with B group, all variables in C group were significantly increased(p<0.01); Whereas in comparison with C group, all variables measured in D group remarkably decreasedp< 0.05 or 0.01. Conclusion  ANG II probably play an important role in VILI, and the blocking agent of AT1 can remarkably alleviate ventilator-induced lung injury.

[Keyword]  Ventilator-induced lung injury; Mechanical ventilationLosartan

 

    在人和大鼠的肺组织,存在着局部的肾素-血管紧张素系统(RAS),其中以血管紧张素IIANG II)及其受体较为重要,在调节肺细胞的生长、凋亡等方面起着重要作用[1,2]。近来研究发现,ANG II可能在各种急性肺损伤中起着重要的作用。研究证明,在多种原因所致的急性肺损伤中,肺组织中ANG II的表达水平均显著增高,而阻断ANG II受体或减少ANG II的生成可以减轻多种原因所致的急性肺损伤,减轻肺水肿程度,抑制中性粒细胞的浸润和肺细胞的凋亡[3,4,5]。机械通气所致的肺损伤(Ventilator-induced lung injury, VILI)是肺功能严重受损的病人行机械通气支持治疗时的常见并发症,其主要致病机制之一可能是由于过度的机械刺激(如牵拉、切变力、剪切力等)激活了肺细胞多种致炎因子的表达,引起白细胞(特别是中性粒细胞)在肺组织中的“募集”,导致肺组织的急性炎性损伤[6,7]。目前,ANG II及其受体在VILI中的作用在国内外还很少有人研究。本试验拟通过建立大鼠VILI实验模型,以血管紧张素原(ANG II的前体)的表达水平间接反映ANG II的水平,以ANG II受体(AT1型)特异性阻断剂洛沙坦预处理VILI的大鼠,来研究ANG II AT1型)受体阻断剂洛沙坦对大鼠机械通气所致肺损伤(VILI)的保护作用及其机制。

材料与方法

    主要试剂  Trizol提取液、逆转录试剂盒、PCR试剂盒均购自深圳晶美生物工程有限公司,PCR特异性引物购自上海生工生物工程技术服务有限公司,总蛋白和MPO检测试剂盒购自南京建成生物工程研究所,TUNEL分析试剂盒为武汉博士德公司提供,AT1受体特异性的阻断剂洛沙坦(Losartan)购自美国Cayman公司。

动物与分组  40只健康SD大鼠,体质量300350g ,随机均分成ABCD四组,A组空白对照组,不行机械通气;B组为正常潮气量通气组:潮气量(VT)=10 ml/kg,呼吸频率(P)=80/minC组为大潮气量机械通气通气组:潮气量(VT)=40ml/kg,呼吸频率(P)=80/minD组为大潮气量机械通气通气加Losartan处理组:潮气量(VT)=40 ml/kg,呼吸频率(P)=80/minD组大鼠在实验前30minLosartan溶液30mg/kg腹腔注射(Losartan粉剂溶于PBS中)。

动物模型  20%乌拉坦腹腔注射麻醉大鼠,起效后行气管切开,A组大鼠直接处死,其他各组大鼠则插入气管导管(用胶管自制)行机械通气(浙江大学医学仪器厂提供),机械通气参数统一设置为:潮气量(VT)40ml/kg10 ml/kg,呼吸频率(RR):80/min,吸/呼比(I:E)为12PEEP为零,吸入气体为室内空气。皮下切开行股静脉穿刺置管,静脉给阿曲库铵维持肌松。颈内动脉穿刺置管,监测动脉血压、心率、血气等。本研究CD两组大鼠大潮气量机械通气的潮气量设为40ml/kg,是参考Karzai W[8]等的实验研究并稍作修改。

标本留置  机械通气达到预定时间后,放血处死大鼠。小心分离左右两侧完整肺组织,部分右侧肺组织用多聚甲醛溶液固定,用于病理切片以及细胞凋亡检测。左肺用生理盐水行肺灌洗(2ml×3次),回收的肺灌洗液应大于90%。回收后立即离心10分钟(2500r/min),沉淀物用PBS缓冲液稀释后光镜下行白细胞计数,上清液置于-70℃冰箱保存待检。

检测指标  对于肺组织标本,具体检测各组肺组织病理改变,血管紧张素原基因的表达,TUNEL法检测肺细胞的凋亡,同时检测肺湿干重比值以及肺组织中性粒细胞髓过氧化物酶(MPO)的水平;对于肺灌洗液标本,具体检测肺灌洗液中总蛋白浓度以及白细胞计数的水平具体方法如下:

肺湿干重(W/D)比值测定:取动物一叶右肺组织,称湿重后置于烤箱中, 70烘烤至恒重后称干重,计算肺W/D比值。

TUNEL法检测凋亡细胞  用脱氧核糖核苷酸末端转移酶介导的末端标记法(TUNEL法)分析肺组织中细胞凋亡的情况通过原位测定肺组织切片中的DNA 片段对损伤的肺组织中细胞凋亡的程度进行评价。细胞核呈棕黄色染色为阳性细胞,在400 倍光镜下每张切片随机观察10个视野计算每个高倍视野中阳性细胞数和该高倍视野中细胞总数的比值,以百分数表示,即凋亡指数(apoptosis index,AI)。

总蛋白和MPO  肺灌洗液中总蛋白的测定采用考马斯亮兰染色法,采用UV-2000型分光光度计测量吸光度;肺组织中MPO活性测定采用专用MPO试剂盒,先准确称取肺组织重量,按重量体积比用匀浆缓冲液(试剂盒中自备)进行匀浆,其后所有步骤均严格按照试剂盒进行,最后测量特定波长下吸光度。MPO活性单位定义为:每克肺组织湿片在37℃反应体系中H2O2被分解1umol为一个酶活力单位。

逆转录-聚合酶链反应(RT-PCR  肺组织中血管紧张素原(ANG等基因表达水平的检测采用RT-PCR的方法。RT-PCR具体方法如下。(一)RNA的提取。准确称取100mg肺组织,匀浆后依次加入适当体积的Trizol、氯仿、异丙醇、75%乙醇进行RNA抽提,确定样品RNA的质量和纯度。(二)RNA逆转录。抽取1ugRNA,严格按逆转录试剂盒所提供的方法合成cDNA。(三)PCRPCR反应体系包括:cDNA 4ulBuffer 5uldNTP 1ul,引物的正义链和反义链各1ulMgCl2 4ulTaq1ul,加水至50ul。内参采用管家基因磷酸甘油醛脱氢酶(GAPDH)。PCR反应设定如下,先95℃预变性4-5min,扩增30-35个循环,每个循环包括如下步骤,变性:94℃-30s;退火:55℃-30s(GAPDH),60℃-30s(ANG);延伸:72℃-45s。最后72℃延伸7-10min,4℃终止反应。PCR产物用1.5%琼脂糖凝胶电泳,用凝胶成像系统采集图像,用图像分析软件(Imagemaster)分析目的基因片段OD值。ANG特异引物为,正义链:5’ CCTCGCTCTCTGGACTTATC 3’,反义链:5’ CAGACACTGAGGTGC TGT TG 3’,目的基因片段长度为226bpGAPDH特异性的引物为正义链:5’ TGAAGGTCGGTGTCAACGGATTTGGC 3’,反义链:5’ CATGTAGGCCATGAGGTCCACCAC 3’,目的基因片段长度为983bp

统计学处理  测定值用±s,用SPSS10.0软件进行单因素方差分析。P<0.05为差异有统计学意义。

 

病理学改变   A组为正常肺组织病理图片;B组肺组织病理基本正常,肺泡间隔正常,偶见少量的炎性细胞以及巨噬细胞,肺泡腔无渗出物;C组肺组织出现明显的炎性损伤性改变,肺泡间隔明显增厚,肺泡腔内可见较多的炎性细胞浸润,部分肺泡腔内有渗出液;和C组比较,D组肺组织病理改变明显减轻,肺泡间隔一定程度增厚,但轻于C组,肺泡腔可见少量炎性细胞浸润,部分肺泡腔有少量渗出物。见图1

RTPCR检测血管紧张素原(ANG)基因的表达   ANG表达水平以ANGGAPDH光密度比值表示。和A组比较,BANG基因的表达水平无显著性差异(P>0.05);和B组比较,CANG基因的表达水平显著增高(P<0.01)。见图2

TUNEL检测肺细胞的凋亡   A组肺组织有少量肺细胞凋亡;和A组相比,B组肺组织细胞凋亡数目无显著性差异(P>0.05);和AB组相比,C组细胞凋亡数目显著性增加(P<0.01);和C组相比,D组肺细胞凋亡数目显著性降低(P<0.01)。见图3、表1

AB组相比,C组肺灌洗液(肺组织)中总蛋白、总细胞计数、MPO肺湿干重(W/D)比值、凋亡指数(AI)等指标显著性增高(P<0.01);和C组比较,D组上述各项指标均显著性降低(P<0.05);AB两组上述各项指标无显著性差异。见表1

参考文献

1. Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med, 2000, 161: 1999–2004.

2. Wang RG, Zagariya A, Ibarra-Sunga O, et al. Angiotensin II induces apoptosis in

human and rat alveolar epithelial cells. Am J Physiol, 1999, 276: 885–889.

3. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005,436:112-6.

4. Raiden S, Nahmod K, Nahmod V, etal. Nonpeptide Antagonists of AT1 Receptor for Angiotensin II Delay the Onset of Acute Respiratory Distress Syndrome. The journal of pharmacology and experimental therapeutics, 2002, 303: 45-51.

5. Lukkarinen H,Laine J, Lehtonen J,etal. Angiotensin II Receptor Blockade Inhibits

Pneumocyte Apoptosis in Experimental Meconium Aspiration. Pediatric Research ,2004, 55: 326–333

6. DOS SANTOS CC , SLUTSKY AS. Cellular Responses to Mechanical Stress Invited Review: Mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol, 2000, 89: 1645-1655

7. Tremblay LN and Slutsky AS. Ventilator-induced injury: barotrauma to biotrauma. Proc Assoc Am Physicians, 1998,110: 482–488.

8. Karzai W, Cui XZ, Heinicke N, et al. Neutrophil Stimulation with Granulocyte Colonystimulating Factor Worsens Ventilator-induced Lung Injury and Mortality in Rats. Anesthesiology 2005; 103: 996–1005.

9. Liu MY, Tanswell AK, Post M. Mechanical force-induced signal transduction in lung cells. Am J Physiol, 1999, 277: 667-683.

10. Touyz RM, He G, Deng LY, et al. Role of extracellular signal-regulated kinases in angiotensin II-stimulated contraction of smooth muscle cells from human resistance vessels. Circulation, 1999, 99: 392-399.

11. Eguchi S, Dempsey PJ, Frank GD, et al. Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J Biol Chem. 2001, 276: 7957-7962

12. Ruiz-Ortega M, Lorenzo O, Ruperez M et al. Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT(1) and AT(2) receptors. Am J Pathol, 2001; 158: 1743–56

13. Ito T, Ikeda U, Yamamoto K, Shimada K. Regulation of interleukin-8 expression

by HMG-CoA reductase inhibitors in human vascular smooth muscle cells. Atherosclerosis, 2002; 165: 51–55

14. Pastore L, Tessitore A, Martinotti S et al. Angiotensin II stimulates intercellular adhesion molecule-1 (ICAM-1) expression by human vascular endothelial cells and increases soluble ICAM-1 release in vivo. Circulation, 1999; 100: 1646–52.

15. Tsutamoto T, Wada A, Maeda K et al.Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin- 6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol, 2000; 35: 714–21.

16. Dandona P, Kumar V, Aljada A et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: evidence of an antiinfl ammatory action. J Clin Endocrinol Metab, 2003, 88: 4496–4501.

来顶一下
返回首页
返回首页

本周热点文章

站内搜索: 高级搜索
关于我们 | 主编信箱 | 广告查询 | 联系我们 | 网站地图 |